Neural Networks and Learning Machines. 3rd Ed. Simon O. Haykins. Pearson. 2008

Chapter 8. Principal-Components Analysis 8.1 Introduction 8.2 Principles of Self-Organization Principle 1. Self-Amplification Principle 2. Competition Principle 3. Cooperation Principle 4. Structural Information 8.3 Self-Organized Feature Analysis 8.4 Principal-Components Analysis: Perturbation Theory 8.5 Hebbian-Based maximum Eigenfilter 8.6 Hebbian-Based Principal Components Analysis 8.7 Case Study: Image Coding 8.8 Kernel Principal-Components Analysis 8.9 Basic Issues Involved in […]

Computational Neuroscience | Course | MS CogSci

Range 8.1~8.7 9.1~9.10 10.1~10.14 10.19~10.21 Chapter 8. Principal-Components Analysis 8.1. Introduction Self-organized learning Self-organized learning is a type of unsupervised learning. locality of learning 8.2. Principles of Self-Organization Principle 1: self-amplification The following rule is based on Hebb’s postulate of learning. If two neurons of a synapse are activated simultaneously, then synaptic strength is selectively […]