Conditional Generative Adversarial Nets | M. Mirza, S. Osindero | 2014

Introduction Conditional version of Generative Adversarial Nets (GAN) where both generator and discriminator are conditioned on some data y (class label or data from some other modality). Architecture Feed y into both the generator and discriminator as additional input layers such that y and input are combined in a joint hidden representation.

Studying Generative Adversarial Networks (GANs)

References Lecture 13: Generative Models. CS231n: Convolutional Neural Networks for Visual Recognition. Spring 2017. [SLIDE][VIDEO] Generative Adversarial Nets. Goodfellow et al.. NIPS 2014. 2014. [LINK][arXiv] How to Train a GAN? Tips and tricks to make GANs work. Soumith Chintala. github. [LINK] The GAN Zoo. Avinash Hindupur. github. [LINK]

Lecture 2: Markov Decision Processes | Reinforcement Learning | David Silver | Course

1. Markov Process / Markov chain 1.1. Markov process A Markov process or Markov chain is a tuple such that is a finite set of states, and is a transition probability matrix. In a  Markov process, the initial state should be given. How do we choose the initial state is not a role of the Markov process. 1.2. State […]

Reinforcement Learning | David Silver | Course

Brief information Instructor: David Silver Course homepage: [LINK] Video lecture list: [LINK] Lecture schedule Lecture 1: Introduction to Reinforcement Learning Lecture 2: Markov Decision Processes Lecture 3: Planning by Dynamic Programming Lecture 4: Model-Free Prediction Lecture 5: Model-Free Control Lecture 6: Value Function Approximation Lecture 7: Policy Gradient Methods Lecture 8: Integrating Learning and Planning […]

Batch Normalization | Summary

References Sergey Ioffe, Christian Szegedy (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML 2015. [ICML][arXiv] Lecture 6: Training Neural Networks, Part 1. CS231n:Convolutional Neural Networks for Visual Recognition. 48:52~1:04:39 [YouTube] Choung young jae (2017. 7. 2.). PR-021: Batch Normalization. Youtube. [YouTube] tf.nn.batch_normalization. Tensorflow. [LINK] Rui Shu (27 DEC 2016). A GENTLE […]

Convolutional Neural Networks | Study

  References L. Fei-Fei, Justin Johnson (Spring 2017)CS231n: Convolutional Neural Networks for Visual Recognition. [LINK] Jefkine (5 September 2016). Backpropagation In Convolutional Neural Networks. [LINK] Convnet: Implementing Convolution Layer with Numpy [LINK] CNN의 역전파(backpropagation) [LINK]

CS231n: Convolutional Neural Networks for Visual Recognition | Course

Lecture 6 | Training Neural Networks I Sigmoid Problems of the sigmoid activation function Problem 1: Saturated neurons kill the gradients. Problem 2: Sigmoid outputs are not zero-centered. Suppose a given feed-forward neural network has hidden layers and all activation functions are sigmoid. Then, except the first layer, the other layers get only positive inputs. […]

Sequence to Sequence Learning with Neural Networks | Summary

References Ilya Sutskever, Oriol Vinyals, Quoc V. Le (2014). “Sequence to Sequence Learning with Neural Networks”. NIPS 2014: 3104-3112. [PDF] Sequence-to-Sequence Models. TensorFlow [LINK] The official tutorial for sequence-to-sequence models. Seq2seq Library (contrib). Tensorflow [LINK] Translation with a Sequence to Sequence Network and Attention. PyTorch. [LINK]

Deep Learning | Udacity

Brief Information Instructor: Vincent Vanhoucke (Principal Scientist at Google Brain) Flatform: Udacity Course homepage:–ud730 Duration 2017-08-24~25: Took Lesson 1, 3-7 without programming assignments. Course Overview Lesson 1: From Machine Learning to Deep Learning Lesson 2: Assignment: notMNIST Lesson 3: Deep Neural Networks Lesson 4: Convolutional Neural Networks Lesson 5: Deep Models for Text and Sequences Lesson 6: […]